
Typical Issues with Middleware

HrOUG 2016

Timur Akhmadeev

October 2016



About Me

Database Consultant at Pythian

10+ years with Database and Java

Systems Performance and Architecture

OakTable member

3rd conference as a speaker

timurakhmadeev.wordpress.com

pythian.com/blog/author/akhmadeev

twitter.com/tmmdv

timur.akhmadeev@gmail.com

http://www.timurakhmadeev.wordpress.com/
http://pythian.com/blog/author/akhmadeev
http://www.twitter.com/tmmdv
mailto:timur.akhmadeev@gmail.com


About Pythian

10K+
Systems

400+
People in 200 cities in 35 

countries 

Founded in

1997

Global Leader In IT Transformation And Operational Excellence

Unparalleled Expertise

• Top 5% in Databases, Applications, Infrastructure, Big Data, Cloud, Data 

Science, and DevOps

Unmatched Certifications

• 9 Oracle ACEs, 4 Oracle ACE Directors, 1 Oracle ACE Associate

• 6 Microsoft MVPs, 1 Microsoft Certified Master

• 5 Google Platform Qualified Developers

• 1 Cloudera Champion of Big Data

• 1 Mongo DB Certified DBA Associate Level

• 1 DataStax Certified Partner, 1 MVP

Broad Technical Experience

• Oracle, Microsoft, MySQL, Oracle EBS, Hadoop, Cassandra, MongoDB,

virtualization, configuration management, monitoring, trending, and more



Agenda

• Background

• Architecture

• Typical Issues

• Approach to Troubleshooting



Architecture

Net

Dev

DBA

NOC

Storage



Typical MW Issues

• Failures

– Out of Memory, Crashes

• Stability

– Hangs, changes in response times



Typical Reasons of Issues



Inefficient Memory Usage

8



OS Memory Usage – Database

• Still very common to miss HugePages

• HugePages are a must

– Lock SGA in memory

– Reduce OS page tables footprint

– Reduce sys% CPU time

• THP have to be disabled



OS Memory Usage – Middleware

• Possible to use HugePages with Java

• Recommended by Oracle

– Oracle Commerce MAA Configuration Best Practices, 

July 2015

• Recommended by VMware

– Large Pages Performance – case study

• Recommended to disable THP



Pre-Java 8 Memory Layout

Heap
Perm

Gen

Code

Cache

Threads, Libs, 

mmap-ed files, 

internal structs

-Xms10G

-Xmx10G

-XX:InitialCodeCacheSize=128M

-XX:ReservedCodeCacheSize=128M

-XX:PermSize=256M

-XX:MaxPermSize=256M

Dynamic, app specific



Pre-Java 8 Memory Layout

Threads, Libs, 

mmap-ed files, 

internal structs

-Xms10G

-Xmx10G

-XX:InitialCodeCacheSize=128M

-XX:ReservedCodeCacheSize=128M

-XX:PermSize=256M

-XX:MaxPermSize=256M

Dynamic, app specific

Can be allocated in HugePages with

-XX:+UseLargePages



Java 8 Memory Layout

Heap
Perm

Gen

Code

Cache

Threads, Libs, 

mmap-ed files, 

internal structs

-Xms10G

-Xmx10G

-XX:InitialCodeCacheSize=128M

-XX:ReservedCodeCacheSize=128M

Dynamic, app specific



Java 8 Memory Layout

Heap
Meta

space

Code

Cache

Threads, Libs, 

mmap-ed files, 

internal structs

-Xms10G

-Xmx10G

-XX:InitialCodeCacheSize=128M

-XX:ReservedCodeCacheSize=128M

Dynamic, app specific

-XX:MetaspaceSize=256M

-XX:MaxMetaspaceSize=256M



Java 8 Memory Layout

Threads, Libs, 

mmap-ed files, 

internal structs

-Xms10G

-Xmx10G

-XX:InitialCodeCacheSize=128M

-XX:ReservedCodeCacheSize=128M

Dynamic, app specific

-XX:MetaspaceSize=256M

-XX:MaxMetaspaceSize=256M

Can be allocated in HugePages with
-XX:+UseLargePages

-XX:+UseLargePagesInMetaspace

-XX:-UseCompressedClassPointers



Java 8 Memory and HugePages

-XX:+UseLargePages

• If not enough pages, default pages are used

• For Metaspace in HugePages as well:

-XX:+UseLargePagesInMetaspace

-XX:-UseCompressedClassPointers



Memory Usage – Java Heap

• Application creates objects in heap

• Heap is cleaned up automatically

• Cleaning is called Garbage Collection

• Major cause of pause time with Java based apps





Memory Usage – Java Heap

• Long GC pause is a result of

– poor sizing and configuration

– insufficient heap

– memory leak

– application deficiencies

• May lead to java.lang.OutOfMemoryError

• More OOM https://plumbr.eu/outofmemoryerror

https://plumbr.eu/outofmemoryerror


Memory Usage – Java Heap

Young Generation

Survivor0 

(S0)

Survivor1 

(S1)

Old GenerationEden



Memory Usage – Java Heap



Memory Usage – Java Heap



Memory Usage – Java Heap



Memory Usage – Java Heap

• High allocation rates in general is not an issue

– As long as objects become garbage quick enough

• Short requests are usually easier to handle

• Long running requests are challenging for GC

– Those that keep large active data set

• Large live set is an issue

– GC takes proportionally more time



High Level Comparison of Collectors

Feature ParallelOld mCMS G1

Live Data Set Small to Medium Medium to Large Medium to XXL

Major GC pauses Up to few secs 50..500ms+ Up to few secs

Memory Usage Minimal Medium Large

Target Throughput Latency Throughput or 

Latency

Downsides High pause times 

with large live sets

* Fragmentation

* Serial Full GC if 

promotion failure

* Complicated

* Often it is slower 

than CMS (yet)







Tools for GC Monitoring

• GC log + GCViewer / http://gceasy.io

• jstat: command line, tabular output

jstat -gcutil PID 5s 10

• jconsole/jvisualvm/jmc

http://gceasy.io/


Resources Allocation

41



Memory Allocation



CPU Allocation



Resources Allocation Advice

• Follow generic sizing rules

• Do not allocate less than 4 vCPUs per JVM

• Run 1 App Server per VM



Resources Allocation Advice

• Do not allocate more than 2 node MW cluster

– If you don’t know how many you really need

• Allocate dedicated instances for critical services

• Split short & batch tasks between nodes



Resources Allocation Advice

Know the limits of an App Server instance
– concurrent users

– requests/second

– traffic/second and /request

– queries/second and /request

– garbage/second

– how big live set could be

– bottlenecks



Resources Allocation – DB Connections

• Large dynamic connection pools do not work

http://www.youtube.com/watch?v=Oo-tBpVewP4

http://www.youtube.com/watch?v=XzN8Rp6glEo

• The problem is easy to appear with

– large MW clusters

– multiple connection pools to same DB

http://www.youtube.com/watch?v=Oo-tBpVewP4
http://www.youtube.com/watch?v=XzN8Rp6glEo


DB Connections Advice

DBCPUs*10/N



Optimistic Use of Oracle RAC

49



Optimistic Use of RAC

• Clients want RAC because “HA & scalable”

– Especially those clients that never had it in-house

• Expectations are

– all apps scale well in RAC

– RAC provides protection from node failures

• Often licenses are acquired in advance



Optimistic Use of RAC

• SQL spending time in gc waits

• App behaves worse than with single instance DB

• Sometimes clients think it’s not enough HW and 

try to add more nodes to RAC



RAC Advice

• Treat it as a consolidation platform

• Use services. Even without RAC!

• Service Affinity to single node



Optimistic Use of RAC



RAC Advice

• Using 5y+ HW makes no sense

• Follow OraCHK recommendations (carefully)

• Active GridLink with WebLogic

– https://docs.oracle.com/middleware/1212/wls/JDBCA/

gridlink_datasources.htm

https://docs.oracle.com/middleware/1212/wls/JDBCA/gridlink_datasources.htm


Unreliable Statistics Management

57



Typical Statistics Management

• Default task makes changes in production

– silently with no change control

– same effect as testing code in production right away

• Usually runs way more often than needed

– Some clients run it manually even more often

• Histograms by default METHOD_OPT



Histograms

• By default Oracle creates a histogram when

– Column is used in SQL condition

– Skew in the column data distribution



Histograms

• When App really needs a histogram

– Column is used in SQL condition

– Skew in the column data distribution

– App uses literals in SQL condition

– Histogram helps SQL to run optimally



All Columns Columns with automatically 

created histograms

Histogram 

required



Consequences of Histograms

• As a result of unnecessary histograms

– Increased number of plans in memory

– Unnecessary CPU, memory and disk overheads

– Unexpected plan changes with bind peeking

• Adaptive features suppose to help sometimes

• People “fix” it with different plan stability options

– Without even trying to analyze the cause



Statistics Management Advice

• Statistics as a code

– Do not let Oracle to change your code at random

– Set statistics as part of the code delivery

– Fix Min/Max, bad histograms, partition stats, temp 

tables, new tables, etc.

• Create histograms manually



Inadequate Monitoring and 

Troubleshooting

64









Troubleshooting



Minimal Diagnostics

• OS level metrics

• GC activity: log and/or jstat

• Thread Dumps: top + poor man’s profiler
– http://www.pythian.com/blog/a-simple-way-to-monitor-

java-in-linux/

– jvmtop https://github.com/patric-r/jvmtop

– SJK https://github.com/aragozin/jvm-tools

• Heap Dump + Memory Analyzer

http://www.pythian.com/blog/a-simple-way-to-monitor-java-in-linux/
https://github.com/patric-r/jvmtop
https://github.com/aragozin/jvm-tools


Troubleshooting

• Recommended things to have

– Application Performance Management software

• AppDynamics

• NewRelic

– Java Flight Recorder

– JVisualVM



APM



Summary

• Memory efficiency

• Start small. Scale up first

• RAC as a consolidation platform

• Think and plan stats management

• Don’t just restart. Gather diagnostics.



Thank You!

Q & A

73


